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Stability of a capillary jet with linearly increasing 
axial velocity (with application to shaped charges) 
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The stability of a capillary jet of an ideal liquid with a linear variation of axial velocity 
is investigated. Because of the time dependence in the basic extensional flow the 
evolution of surface perturbations in the jet is an initial-value problem instead of an 
eigenvalue one (as in the case of non-stretching jets). The amplification of any given 
perturbation is found to depend on the relative effects of surface tension and inertia 
terms associated with the extensional flow as well as on the initial wavenumber and 
the specific time when the perturbation is introduced in the flow field. The simulation 
of a shaped-charge jet by the present model is discussed. The results obtained are 
found to give a good description of the essential features of the breakup phenomenon 
of such jets. 

1. Introduction 
The analysis of the stability and breakup of a capillary liquid jet was given by 

Rayleigh (1894) and extended by Weber (1931) to include the effects of the liquid 
viscosity and of the aerodynamic pressure distribution in the surrounding gas. Since 
then it has been extensively studied (Levich 1962; Goldin et al. 1969; Bogy 1979) and 
the classic solutions were extended to include other effects (non-Newtonian fluid, 
nonlinear effects, the influence of surfactants, etc.). 

All the above solutions assumed the jet to move with uniform axial velocity 
(sometimes even taken to be zero), except for small perturbations. The only analytical 
investigations of stretching capillary jets were those of Tomotika (1936) which have 
been revised by Mikami, Cox & Mason (1975). Both these studies neglect the effect 
of liquid inertia, i.e. they describe creeping flow. The present solution includes for the 
first time the effects of liquid inertia for an ideal liquid. 

We then apply the results of the present solution to the case of the shaped-charge 
jet, where the high speeds and intense velocity gradients render the creeping-motion 
approximation inappropriate. 

Because of its high penetration capability, the shaped charge has been extensively 
used since World War 11, in both the military and civilian environments. A typical 
shaped charge consists of an explosive with a conical cavity lined with a thin metal 
sheet. After the initiation of the charge the liner collapses toward the axis where an 
extremely high velocity jet is formed (Birkhoff et al. 1948). 

The velocity of the jet particles increases linearly with the distance from the rear 
end (Pugh, Eichelberger & Rostoker 1952). Typical velocities are N 8 km/s at the 
tip and - 4 km/s a t  the rear end. Consequently, the jet experiences an enormous 
stretching during its flight (in typical cases the length can increase by a factor of 4 in 
100 ps). This stretching is desirable as it is well known (Birkhoff et al. 1948) that the 
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penetration of the jet is proportional to its length upon impact at the target, which 
is the reason for designing the charges so as to produce such stretching, highly 
energetic jets. 

We would thus expect the charge to be more effective the greater the distance 
between the point of production of the jet, and the target (known as the standoff 
distance). However, beyond a certain standoff distance the stretching jet is broken 
into a series of closely similar elongated segments during its flight with the result of 
rapidly deteriorating penetration (Eichelberger 1956 ; Chou & Carleone 1977 ; Chou 
et al. 1977). 

The jet breakup forms one of the strongest limitations on the penetration capability 
of shaped charges. The understanding of this phenomenon may thus help in 
improving the performance of such charges. 

In  $2 we formulate the problem and derive the characteristic equation, the results 
of which are presented and discussed in $3. We then apply the results of the stability 
analysis to the shaped-charge jet in $4. 

2. Analysis 
Numerous data indicate that the axial velocity of shaped-charge jet particles 

increases essentially linearly from the rear to the front tip and is not significantly 
changed from formation to breakup (see e.g. Dipersio, Simon & Martin 1960; Shelton 
& Arbuckle 1979). We thus neglect the dynamic effects of the jet tips and investigate 
the stability of an infinitely long capillary cylindrical liquid jet with linearly varying 
axial velocity. The particles of the jet preserve their axial velocity. 

2.1. The basic solution 
In accordance with the above description we assume W,, the axial velocity of the jet 
particles, to be W, = Kz,, (1) 

where zo is the axial (Lagrangian) coordinate of the liquid particle at t = 0 and K is 
the initial strain rate in the jet (see figure 1). 

Since &/at = W,, we integrate ( 1 )  to find 

z = z,(Kt+ l ) ,  (2) 
where z is the axial location at time t of a liquid particle, the initial Coordinate of 
which was z,. 

Kz Combining ( 1 )  and ( 2 )  gives: 
w, = - 

K t + l ’  ( 3 4  

Substitution of (3a)  into the equation of continuity and integration yield U,, the 

Kr 
21 Kt + 1 ’ 

radial velocity component, 
u, = - 

where T is the radial coordinate. 
The flow field W,, U, in (3a) ,  ( 3 b )  is a purely extensional one; thus a circular liquid 

cylinder whose axis is aligned with z preserves its cylindrical shape (becoming longer 
and contracting laterally). 

Since &/at = U,, we readily obtain 

where ro is the initial (Lagrangian) radial coordinate of the liquid particle. 
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FIGURE 1.  (a )  Schematic description of the jet basic elongational flow field and the coordinate 
system. ( b )  Schematic description of a typical segment of the stretching jet which is subject to 
axisymmetric ‘varicose’ perturbations at non-dimensional time Kt = 0 (upper) and Kt = 0.5 
(lower). -, the perturbed jet surface b(z,  t )  ((6) for m = 0 ) ;  ---, the unperturbed radius a(t) (4); 
k(h) is the wavenumber (wavelength) of the perturbation the initial wavenumber (wavelength) of 
which is k,(A,) (7). 

Hence the jet radius is: 
a0 

(K t+  1);’ 
a( t )  = (4) 

where a. is the initial jet radius. 

integration gives the pressure distribution in the jet : 
Substitution of the velocity components (3a),  (3b)  in Euler’s equation and 
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Po satisfies the dynamic boundary condition Po = crla at the jet surface, r = a, 
where cr is the coefficient of surface tension (which is assumed to be constant). 

As a result of neglecting the dynamic effects of the jet tips, the basic flow field is 
one of uniform elongation as if the sections of the jet were moving independently of 
each other. 

2.2.  Stability analysis 

The jet is assumed to be perturbed by small-amplitude standing waves. Neglecting 
second-order terms in the perturbations we carry out a linear stability analysis. 

The perturbed free surface is 

r =  b(O,z , t )  =a(t ) [1+q(t )cosm0coskz] ,  (6) 

where m = 0,1,2, ... . The case m = 0 describes the axisymmetric ‘varicose’ per- 
turbation; k is the wavenumber: 

k = - = k , .  2x 
h K t + l ’  (7) 

and A is the wavelength. Owing to the basic elongational motion, (3a ) ,  the wave- 
number decreases as (Kt+ l)-l from the initial value k, (see figure 1). 

q( t )  is assumed to be a small perturbation q Q 1 and thus terms of O(q2) are 
neglected in the following analysis. 

The above form of the perturbation may be considered as a Fourier component 
in the description of a perturbation with a general spatial ( 0 , z )  dependence. The 
linearization allows for the stability analysis of each such component separately. 

The velocity field in the perturbed jet is: 

u =  uo+u; v =  v ;  w = w,+w; (8a-c) 

where U ,  V ,  W are the components in the cylindrical coordinate system ( r ,e ,z> 
respectively. U,, W, are the velocity components of the basic flow field ( 3 a ) ,  (3b)  and 
u, v, w are perturbations, presumably of O(q) .  

The compatibility of the velocity field (8) with the assumed form of the perturbed 
jet boundary requires that: 

Db ab 
r = b ;  u = - = -+ U-Wb. Dt at (9) 

Substitution of U,, Wo from ( 3 a ) ,  (3b ) ,  b from (6), k from (7) and (U, V ,  W) from 
(8a) to (8c), neglecting terms of O(q2), results in the kinematic boundary condition: 

r = a ;  u = a(t) q’(t) cosm0 cos k z ;  (10) 

We define the perturbation potential 4 as u = V4 such that 4 satisfies Laplace’s 
where the prime denotes differentiation with respect to the argument. 

equation V24 = 0 within the jet (0 < r < b) together with the boundary condition: 

r = a ;  9 = a(t)  q‘(t) cosm0 cos kz. ( 1 1 )  ar 

We look for a solution of the form : 

q5 = F(r,  t )  G ( 0 )  cos kz. (12) 

Substitution in Laplace’s equation, together with the boundary condition (1 1) and 
the requirements of regularity at  r = 0 and single-valuedness results in : 

q5 = a( t )  ( ( t )  f,o cosm0 cos k z ;  
k4n (ka)  



Stability of a capillary jet with increasing axial velocity 293 

where I ,@) denotes the modified Bessel function of the first kind and order m of the 
variable x .  

The dynamic boundary condition is : 

r = b ;  P = a  -+- G, a 
where P is the liquid pressure and R,, R, are the principal radii of curvature of the 
perturbed jet surface. 

From (6) one readily obtains (Lamb 1932, p. 473) to O(q) :  

1 1 1  
-+-=-[l-q(1-m2-k2+a2) cosmecoskz]. 
R, R2 a 

The pressure field in the perturbed jet is: 

P = Po+p;  (16) 

where Po, the pressure in the basic flow, is given by (5)  and p is the pressure 
perturbation which is presumably of O(7).  

Substitution of U,, Wo from (3a),  (3b), Po from (5 ) ,  U,  V ,  W from (8a)  to (8c)  and 
4 into Euler’s equation, neglecting terms of O(q2) and integrating yields: 

Substituting Po from (5 ) ,  $ from (13) and the principal radii of curvature (15), in 
the dynamic boundary condition (14), neglecting terms 0(v2) and employing the 
modified Bessel equation for I ,  : 

where I, is a function of ka, we obtain the characteristic equation for q(t)  

XI:, 
4 (Kt+1)2 I ,  

[T(Kt+ 1)f (1  -m2-x2)-  13 - 7 = 0; (18) 
3 K 2  -- 

where 

is the instantaneous non-dimensional wavenumber of a perturbation which had the 
initial non-dimensional wavenumber koao at t = 0. (It should be noted that 
perturbations may be continuously formed in the flow field at all times to 3 0, not 
only at to = 0. For perturbations which are introduced at to > 0, koao is in fact ti  

‘virtual’ initial wavenumber which is greater than the actual one xo.) 
4 a  T=-- 
3 pK2ai’ 

where the non-dimensional parameter T represents the relative effect of the surface 
tension and the liquid inertia associated with the axial velocity gradient in the basic 
elongational flow. 

The characteristic time for the divergence of perturbations due to the capillary 
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instability is 7, N (pai/a)t and the characteristic time for the basic elongational flow 
is 7, N 1/K. Thus: 

(19) 

In  the limiting case K = 0 (T-+oo), x = koao and is no longer a function oft. In 

- T z  N T .  
7: 

this case (18) takes on the form: 

cr k a I’ (koao)  
7 f ( t ) - -  O O (l-m2-L;a;)?/qt) = 0’ 

I m  (Lo ao) 

which is identical with Rayleigh’s classical solution for a capillary non-stretching jet. 
A useful alternative form of (18) (for k > 0) is obtained by applying the 

transformation: q( t )  = F(x)  : 

3. Results and discussion 
As a consequence of the basic elongational flow in the present solution, the 

wavelength of each perturbation increases with time. Hence the coefficients in (18) 
and (20) are time dependent and thus the perturbations do not exhibit a simple 
exponential time dependence. 

It is therefore not sufficient to deal with the growth rate of the perturbations (which 
is not constant) in order to find dominant wavelengths for breakup. We should instead 
integrate (18) or (20) and follow the time evolution of the perturbations. 

Before proceeding to the numerical integration of (18) and (20) we briefly study 
certain asymptotic cases. These reveal some characteristics of the evolution of 
perturbations in the elongating jet. 

Applying the transformation : 

to (20), we arrive at : 
G + g ( X ) G  = 0; 

where : 

g(X)=--(p+l)P!$+- 3 m2 2-+5 I,+ ___ 7 1 1  -+- 
4 x  Im :( ;: ) X I ,  (:’ 3 6 ) ~ ~  2 

- ~ [ T ( ~ ) ’ ( l - m 2 - x 2 ) + 1  3 

The type of asymptotic behaviour of the solutions is related to the sign of g(x): 
If g ( x )  > 0 we expect an oscillatory behaviour whereas for g ( x )  < 0 some kind of 
exponential time dependence is to be anticipated (Murray 1974, chap. 6). 

For rn 2 1, g ( x )  > 0 for all x > 0. Only in the axisymmetric case (m = 0) does there 
exist a ‘transition point’ x = xt where g ( x )  changes its sign from g ( x )  > 0 for x > xt 
to g ( x )  < 0 for x < xt. Hence the axisymmetric perturbations will be amplified more 
than all the rest and will dominate the process of jet breakup. (The same conclusion 
can be reached by transforming (18) in a similar manner.) We therefore limit the 
following discussion to the case m = 0. 
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The initial development of short-wavelength perturbations can be described by 
finding an asymptotic solution of (18) for k, a, +oo while Kt - O(1). The approximate 
solution thus obtained? is : 

(24) 
where T = T(k, a,):. 

This solution predicts an oscillatory initial behaviour with a moderately increasing 
amplitude. 

The later stages of the evolution of axisymmetric perturbations are approximated 
by constructing the asymptotic solution of (20) for x + O .  The asymptotic procedure 
yields : 

(25) ~ - ~ e x p [ k T ]  (6p); [IT- 15 -f+o($)]. xt 
8 (6T) 

Substitution of the expressions for p and x results in : 

9 - ( K t + 1 ) ~ e x p [ ( 6 ~ ) f k , a O ( K t + l ) f ] .  (26) 
The divergence is thus slower than the simple exponential dependence found in the 
case of capillary non-stretching jets. 

Increasing T or k,a, accelerates the divergence: the greater the value of T ,  the 
stronger the destabilizing effect of surface tension. k, a, has a similar effect because 
for a greater k, a, the relevant perturbation reaches the region of small wavenumbers 
and becomes divergent at a later time when the jet radius is smaller. Therefore this 
perturbation is built up under a stronger influence of surface tension. 

In  order to integrate (18) or (20) we need to specify a couple of initial conditions. 
The choice of the specific values for 7,q' is arbitrary. We choose: 

t = t , ;  7 = 1 ,  f = O ;  (27) 

or : 

(The incorporation of other combinations of initial conditions (Appendix A) did 
not show any essential differences. The above choice is a matter of convenience.) 

As argued above, (19), T is a measure of the ratio of the characteristic timescales 
associated with the basic elongational flow and with the divergence of the unstable 
perturbations. Hence if T % 1, the jet breaks up before any significant extension takes 
place and we may neglect the effects of stretching. On the other hand, if T 4 1, the 
capillary instability turns out to be very weak. Since we are interested in the 
description of the jet when both effects are of comparable significance we examine 
the range 0.1 < T < 100. 

Figure 2 shows the variation of the amplitude F with the non-dimensional time 
Kt (or the instantaneous non-dimensional wave number x) for T = 10 and kou, = 3. 

The two modes of time dependence predicted by the above asymptotic results, (24) 
and (25), are easily recognized: 

Initially, F oscillates with a moderate amplification of amplitude as Kt increases. 
The amplification is due to the diminishing of the restoring force associated with the 
surface tension as the wavelength increases with time (as might happen with the 

t The details of this and the following asymptotic analyses may be obtained directly from the 
authors. 
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FIGURE 2. Evolution of perturbation amplitude F with non-dimensional time Kt for T = 10, 
koao = 3. (The lower scale is x, the non-dimensional wavenumber.) 

vibrations of a mechanical system consisting of a point mass and a spring the ‘stiffness 
constant’ of which decreases with time). 

A0 time progresses and x decreases below x = 1 the influence of the surface tension 
becomes destabilizing (the ‘stiffness constant’ of the spring in the above mechanical 
model becomes negative). Hence, the turning point which can be seen in the graph 
shortly after x = 1,  where the curve becomes concave. However, a t  x = 1 ; F = 0.630, 
F’ = 0.310 (7’ = -0.224K). Owing to the inertia of the liquid, F continues to decrease 
with decreasing x (increasing Kt) .  Only after changing its sign (at x = 0.78) does it 
diverge rapidly toward negative values. 

In as much as perturbations can form at all times to 2 0, k,a, does not represent 
a single perturbation, but rather the whole spectrum of perturbations the instanta- 
neous wavenumber of which is 2. In order to examine the influence of the time of 
initiation on the evolution of perturbations figure 3 shows the variation of F with 
Kt for T = 10, koao = 3 and xo = 3,2,  xc = 0.996,0.5. (x, is defined below, (29)). We 
assume the initial relative amplitude ~ ( t , )  (F(xo))  to be independent of xo.t 

For all xo > xc = 0.996 F initially oscillates. For Kt sufficiently large (Kt > 2) all 
the curves diverge, yet the direction of divergence and the values which I k’ I attains 
for a given Kt differ for the different values of xo(Kt,). The reason for these differences 
is that the various perturbations reach the region of divergence with different 
combinations of F ,  F .  Due to the inertia of the liquid these differences act to delay 
the divergence in some cases and accelerate it in other cases. 

In  order to study the influence of the parameters T, k, a, we should therefore select 

t Some references (e.g. Mikami et al. 1975) assume instead a constant absolute initial perturbation 
amplitude. The amplification of a@), the absolute amplitude, is 

-=-- a(t) a(t)  I lV)  
4 t 0 )  a(&) N o ) ‘  

Thus the results obtained for the relative amplitude can be translated in an obvious manner to 
give the relevant information concerning the absolute amplitude. 
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FIGURE 3. Same aa in figure 2, but for perturbations introduced at  xo = 3, 2, xc = 0.996, 0.5. 

a certain perturbation from the whole spectrum of perturbations which belong to a 
given value of k, a,. We found it most convenient to choose the earliest perturbation 
which grows monotonically. From (20) together with the initial conditions, (27), it 
can be verified (Appendix B) that this condition is satisfied by xo = xc, where xc is 

(29) 
the solution of: 

It is readily shown that for: 

(30) 

k,a, < xc, in which case the whole spectrum of perturbations associated with k,a, 
grows monotonically. Hence we choose : 

(31) 

xf+Fx:-P= 0. 

1 
(koa0)' < I - - *  T' 

xo = min (XI27 ko ao). 

This choice filters the 'noise' associated with the oscillations prior to xc. Apart from 
this matter of convenience xc is of some practical importance in the context of shaped 
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FIQURE 4. Logarithmic amplification lg,, F of perturbations with initial conditions at 
xo = min(xc, k,a,) for T = 10 and k,a, = 1, 2, 4, 8, 14. The broken line marks the ‘amplificatibn 
envelope ’. 

charge design: There is no significant growth of perturbations in the range x > x,.t 
Keeping in mind that the timescale for the shaped-charge jet is usually less than 
100 ps, certain divergent perturbations may prove practically unimportant since 
their xc is not reached until the jet hits the target. 

Figure 4 describes the dependence of lg,, F ,  the logarithmic amplification of the 
above chosen perturbations, on Kt ,  the non-dimensional time for T = 10, and several 
values of k,a,. 

The various curves show slow initial divergence (as could be anticipated since both 
F’ and F“ vanish simultaneously if xo = x,) ; the growth rate then rapidly increases 
and is later gradually moderated. 

t The amplification of the oscillations in the range x > xC appears to be quite moderate. 
Furthermore, the liquid viscosity (which is not included in the present model) tends to attenuate 
these early oscillations, if not cancel them altogether (Frankel 1984). 
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FIGURE 5. The logarithmic amplification Ig,,F vs. kouo for T = 10 and Kt = 2, 4, 6, 8, 10. 

We may further note that, the greater the value of koao, the greater the 
amplification of the relevant perturbation, and the later this amplification appears. 
Consequently, there is no one dominant perturbation throughout the process, but 
rather at each moment there is a different dominant perturbation. 

Figure 5 illustrates the variation of the logarithmic amplification with k, a, for 
T = 10 and several values of the non-dimensional time Kt. This figure shows that the 
amplification and ( k , ~ , ) ~ ,  the value of boa, which belongs to the most amplified 
perturbation at a given time, are both increased as Kt increases. 

Figure 6 shows the variation of the maximal amplification with time for T = 0.1, 
1,10,100. The curve for T = 10 is identical with the ‘amplification envelope’ marked 
by the broken line in figure 4 (the other curves are obtained in a similar manner). 
We see that the higher the value of T the greater the amplification for a given Kt. 
This is quite obvious, since a greater value of T means a stronger destabilizing effect 
of surface tension. 

We now turn to look for the perturbations of maximum amplification assuming 
that these perturbations are likely to dominate the process of jet breakup. xm, the 
instantaneous non-dimensional wavenumber of the perturbation of maximum growth 
for given values of T, Kt may be obtained from : 

Since the analytical expression for F is not known, xrn has to be found numerically. 
Some insights into the behaviour of the solutions might be gained by first approxi- 
mating xrn for Kt  Q 1 and Kt S 1. 

(i) For Kt 4 1 : 



300 I .  Frankel and D .  Weihs 

M 

5 

4 

3 

2 

T =  100 

I 

FIGURE 6. Amplification envelopes (time dependence of maximal 
logarithmic amplification M) for T = 0.1, 1, 10, 100. 

As 7 , ~ ’  at t = 0 are dictated by the initial conditions the small-time behaviour 
is governed by f“’0). ~ ( t )  may be approximated by: 

v ( t )  - 1 +h”(o) t 2  + o( (~q3) .  

Substituting the initial conditions, (27), we obtain from (18): 

In  order that a perturbation may grow at early time Kt 2 O+ we require that 

(30) 
1 

(k,a,)2 < 1 -- T’ 
(which assures that k, a, < x, ) .  This inequality cannot be satisfied by any real Lo a, 
unless T > 1. It can be readily verified with the aid of (29) that if T < 1 : k,a, > xc 
for any k,a,  > 0 and thus it takes a finite time before any perturbation grows. 

~ “ ( 0 )  > 0, hence: 
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T 1.01 1.1 1.3 1.5 1.7 3 10 100 lo00 

xml 0.071 0.211 0.338 0.406 0.451 0.572 0.662 0.694 0.697 
xma 0.099 0.212 0.340 0.406 0.451 0.571 0.661 0.693 0.696 
(Kt )  0.0087 0.0035 0.0029 0.0020 0.0020 0.0017 0.0011 0.0006 0.0004 

TABLE 1. The dominant perturbations for Kt 6 1, where : xml are the asymptotic resulta obtained 
from (34); xmz the numerical computation; and (Kt) the relevant values of Kt at which xms was 
obtained 

The perturbation of maximal growth is obtained through : 

For T+m we get Rayleigh’s solution xrn = 0.697. The values of xrn for finite values 

(ii) For Kt % 1 : 
of T > 1 appear in table 1.  

Since xrn is determined through the interplay of the surface tension and the inertia 
of the liquid, it must remain finite. (The destabilizing effect of the surface tension 
is evidently limited to x < 1, Due to the inertia effect xrn must remain finite because 
the amplification of a perturbation x + O  is associated with the acceleration of an 
infinite liquid mass). We may thus conclude that, for Kt % 1, (koao)m % 1 (and thus 

Consequently we approximate F by looking for an asymptotic solution of (20) for 
!F% 1 too). 

koa,+oo and x < 1. The expression thus obtained is: 

where : 

The coefficients A, B should be determined through the application of the initial 
conditions (28) with xo given by (31). Yet, for % 1 one readily obtains: 

xc - 1+0(&). 

@,(x) = 0 for x = 1 and F is singular there. This difficulty is circumvented by first 
finding an approximate solution which is valid in the neighbourhood of x = 1 and 
then matching it with the expression in (35). 

This procedure yields B - l/(k,a,)h, A = (+2/3)B. Hence the first term in 
brackets in (35) is negligible for T 9 1. Substituting B and expressing k, a, as (Kt + 1)j 
we obtain from (35) : 

F - H ( x )  exp $(Kt + 1); (37) 

where : 
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FIGURE 7. Time dependence of xm, the non-dimensional wavenumber 
of dominant perturbations for T = 0.1, 1, 10, 100. 

Differentiation and substitution in (32) results in 

For Kt 9 1 we may neglect the first term and thus xrn is the solution of: 

Substituting cPo(x), from (36), we solve numerically to find xrn = 0.307 for all T, 
Kt 9 1.  

Figure 7 illustrates the dependence of xrn on Kt for several values of T. We note 
that as Kt increases the various curves converge and xrn tends to a constant limit. 
The convergence to the limiting value is faster the greater the value of T. For 
example: at Kt = 9 we find that for T = 0.1, 1 ,  10, 100: xrn = 0.329, 0.317, 0.310, 
0.308 respectively (compared with the asymptotic prediction xrn = 0.307). 

For decreasing values of Kt the different curves disperse : the greater T the higher 
the relevant xrn. Table 1 compares the results of the numerical computation for KtkO 
with the asymptotic values obtained from (34). Because of reasons inherent in the 
numerical procedure xrn cannot be computed for Kt = 0, but only for small Kt > 0. 
Thus the agreement of the asymptotic values and the numerical computation is better 
than it seems at  first glance. 

4. Application to the analysis of shaped charges 
We now apply the foregoing results to the description of the jet breakup in a 

conventional copper-lined conical-shaped charge. The present solution models the 
shaped-charge jet as a capillary inviscid liquid jet, thus essentially following the now 
classical approach of Birkhoff et al. (1948) who employed an ideal liquid as a model. 
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Let us first consider the effects on a perturbed jet with free surface described by 

r = b = a( l+q coskz). (39) 

The liquid pressure changes due to the perturbation as: 

p = ($+i) 2 (1 - b $) . 
Substituting b we thus obtain AFs, the increment to the resultant tensile force on 

the perturbed capillary jet cross-section : 

AFS z R ~ U (  1 - k2a2) 7 COB kz. (40) 

The only source of relevant data in the open literature are the studies of Carleone 
et al. (1977) and Chou et al. (1977). Carleone et al., using a plastic flow model, obtained 
an expression for the average flow stress (their equation 20). This, in present 
notation, is: 

where y is the yield stress. Substituting b we obtain AFp, the increment to the tensile 
force in the perturbed plastic jet: 

AFp s 2xa2y( 1 -+k2a2) 7 cos kz. (41) 

Thus, for ka sufficiently small, (40) and (41) are equivalent if the surface tension 
u is equated to ya. We shall use this in order to be able to compare results. 

The results in the literature show that,decreasing the yield stress (surface tension) 
or increasing the density or the gradient of axial velocity all act to slow down the 
growth of perturbations in jets. All these effects are equivalent in the present solution 
to decreasing T, and thus it correctly predicts these tendencies. 

We now select as a basis for comparison typical data for a shaped-charge jet (Chou 
& Carleone 1977) : initial strain rate K = 2.9 x lo4 s-l; initial radius a, = 1.5 mm ; jet 
density p = 8.9 g/cm3. We also take an average breakup time of i+, = 75 ps (Chou et 
al. 1977). 

From the above discussion we estimate: u N yao = 3 x lo8 dyn/cm (taking 
y = 2 kbar as the plastic yield stress for copper). Thus we have: T = 15.8, Ktb = 2.18. 
By interpolation in figure 7 we find xrn r 0.33. 

Making use of these values together with the definitions of x, F and (29) for xc ,  
we calculate the appropriate values of koao (r 1.84), F ( S  65.4), xc ( s 0.992) and 
hence estimate the time (associated with the instantaneous wavenumber 2,) 
t,  - 18 ps. This time marks the beginning of divergence of the perturbation which 
dominates the breakup of the jet (cf. the paragraph after (31)). This result is confirmed 
by the numerical simulations of Chou et al. (1977) which also predict a finite time 
before amplification starts. 

The value of xrn enables also the estimation of the aspect ratio l / d  (length to 
maximal diameter) of the segments of the broken jet, and the velocity difference A W 
between adjacent segments (both relatively simple for experimental measurement). 

Assuming the perturbed surface to remain sinusoidal and the jet failure to occur 
when the absolute amplitude of the perturbation becomes equal to the radius of the 
jet, we obtain from conservation of volume : 

- 5.92. 
1 1 / 6 ~  -=-- 
d 4~rn 
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The velocity difference is obtained by calculating the wavelength of the perturbation 
prior to breakup and substituting in (3a) .  We find: A W  = 149 m/s. 

These calculated values of l / d  and A W are within the range of experimental data 
reported by Chou et al. (1977). 

We finally examine Fb, the amplitude growth up to Kt,, the non-dimensional 
breakup time. From figure 6 we see that, for T = 10, Ktb = 2.18; Fb 3.5. This 
unreasonably small value is probably a consequence of the above determination of 
a (and hence of T) which is based on y = 2 kbar, the ‘static’ value for copper plastic 
yield stress. 

Van Thiel & Levatin (1980) remark that they had to assume the plastic flow stress 
to be as high as Y = 24 kbar (instead of y = 2 kbar) in order to achieve a good 
agreement of their computations with experimental data for copper jets. In fact, i t  
seems quite improbable that the ‘static’ value y could be applicable at the extremely 
high strain rates encountered in the shaped-charge jet. 

The resemblance of the respective effects of AFs and AF,, (40) and (4l) ,  which was 
the basis for estimating a, is independent of the specific value of y. Due to the 
uncertainty in Y, the determination of r~ should at  any rate be considered just as 
a crude order-of-magnitude estimate. If we thus take T = 100 (instead of 15.8) we 
obtain a more realistic value of Fb = 500 (cf. figure 6). This change in T causes only 
slight modifications in xrn and Z/d (as demonstrated in figure 7). 

We thus conclude that the adjustment of the value of T (within the uncertainty 
range of Y) enables a complete simulation of shaped-charge-jet breakup. 

5. Concluding remarks 
The features of the present problem are best clarified through a comparison with 

the case of a non-stretching capillary jet (Rayleigh’s solution): in the case of the 
non-stretching jet the wavelength of each perturbation is time independent. Con- 
sequently, perturbations exhibit either periodic oscillations (in the region of stable 
wavelengths) or simple exponential divergence (in the unstable region). 

In  the present problem the wavelength of each perturbation increases with time 
and therefore there is no simple exponential time dependence : a perturbation with 
a short initial wavelength starts as an oscillatory one with a moderate amplification 
and later becomes monotonically divergent (with a time-dependent growth rate). 

Consequently, there is no one perturbation which dominates the whole process, but 
rather, the later the relevant time, the greater the amplification of the dominant 
perturbation and the shorter its initial wavelength. 

The generalization of this solution to include the effect of the liquid viscosity is 
being presently accomplished and will be the subject of a forthcoming paper. 

The discussion in $4 demonstrates that the present solution gives a good description 
of the essential features of the shaped-charge-jet breakup. Thus it may serve as a 
better insight into this phenomenon. The evaluation of this solution as an improved 
design tool depends on more detailed information than that to be found in the existing 
open literature. 

Appendix A: The initial conditions for the numerical integration 
Equation (20) is a second-order linear ordinary differential equation. Its general 

solution may be constructed by a linear combination of two linearly independent 
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FIQURE 8. The influence of the initial conditions for T = 10, k,a, = 3, xo = 3, 2, 0.996, 0.5: 
-, the solution Fl which satisfies the initial conditions x = x,; Fl = 1, F ;  = 0; ---, the solution 
F, which satisfies the initial conditions x = x,; F, = 0, Fi = - k, a0/xo. 

solutions such as Fl and F, which are obtained via integration of (20) together with 
the initial conditions: x = x 0 ;  Fl+O, F ; = O ;  (A la)  

(A 1b)  x = x0; F, = 0, Ft += 0. 

The above discussion dealt exclusively with Fl. In the following we compare Fl and 
F, in order to ensure that this choice does not conceal some essential features of the 
solutions of (20) (which may influence the physics of the present problem). 

In  describing Fl we assumed that the initial relative amplitude W&B independent 
of xo. It thus seems reasonable to ascribe to F; an initial value such that the ratio 
of the perturbation of radial velocity and the radial velocity of the free surface of 
the jet is independent of xo. 

According to the kinematic boundary condition, (lo), u/Uo  - O(uq’/a’). Substitu- 
ting a(t) from (4), we obtain the appropriate initial condition: 
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Figure 8 examines the effect of the initial conditions through comparison of Fl, F,. 
(The curves of F, were added to figure 3 which had originally contained only the curves 
of Fl.) No essential differences are revealed by comparison of the two families of 
curves. 

Appendix B: The divergence of perturbations for xo < xc 
We write (18) in short : r"+b( t ) ' l ' - c ( t )q  = 0; 

where c( t )  > 0 and b ( t )  is non-singular. 
Multiplying this equation by exp [JE, b(7)  d ~ ]  we obtain the self-adjoint form 

d 7' exp [ f b(7)  d ~ ]  = c ( t )  exp [ Jt: b (7)  d ~ ]  7 
dt t o  

and integrating together with the initial conditions t = t o ;  7 = 1 ,  7' = 0, (27): 
t 

7'@) = lo C(71) 7(71) exp [ -6 b(7) d7] d71* (B 2) 

Since ~ ( t , )  = 1, 7 > 0 for some interval to < t < t, .  Then from (B 2) ~ ' ( t )  3 0 and 
monotonically increasing ; hence 7 ( t )  is also monotonically increasing and 
q( t l )  > ~ ( t , )  > 0. We may thus repeat this process for some interval t ,  < t < t,  and 
so forth. Therefore 7 , ~ '  are both monotonically divergent provided that xo < xc. 
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